
This paper is a preprint (IEEE ‘accepted’ status).

IEEE copyright notice: © 2017 IEEE. Personal use of this
material is permitted. Permission from IEEE must be obtained
for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or
promotional purposes, creating new collective works, for
resale or redistribution to servers or lists, or reuse of any
copyrighted component of this work in other works.

DOI. Not yet assigned

Model Driven Software Engineering in Education:
A Multi-Case Study on Perception of Tools and UML

Grischa Liebel
Chalmers | University of Gothenburg

Gothenburg, Sweden
Email: grischa@chalmers.se

Omar Badreddin
Computer Science Department

University of Texas, El Paso, USA
Email: obbadreddin@utep.edu

Rogardt Heldal
Western Norway University of Applied Sciences

Bergen, Norway
Email: rogardt.heldal@hib.no

Abstract—While several benefits of using models in software
engineering have been observed in practice, the adoption of
modeling remains low. Multiple challenges of using models,
especially related to tools, have been reported both for industrial
use and for education. However, there is a lack of systematic,
empirical investigations of the challenges in modeling educa-
tion and their relation to industrial challenges. Therefore, we
conducted a multiple-case study with two cases, in the U.S
and Sweden, focusing on students’ perceptions towards tooling
and UML in education. Our data collected from 369 student
evaluation surveys, enriched with qualitative data, shows that
the students’ perception of modeling tools depends not only
on the complexity of tools, but rather on multiple contextual
factors, including tool characteristics, scope of course and project
contents, nature of the required models, and the tools’ role
in generating executable artifacts. We conclude that there is a
need for tailoring modeling tools for education beyond focusing
on simplification and usability. Furthermore, due to the broad
diversity within the modeling domain, there is a need for adapting
the use of tools to the specific curriculum and course learning
objectives.

Keywords-UML, Model-Driven Architecture, Model-Driven
Engineering, Pedagogy.

I. INTRODUCTION

Software modeling is recommended in several computer
science and software engineering curricula [1]. Furthermore,
it has been shown that creating up front design improves the
overall quality of the software under development, and can
facilitate automatic generation of various system artifacts [2].

However, while modeling and model-driven practices such
as MDA [3] or MBE (see [4]) are widely adopted in some
domains like embedded systems [5], other communities such
as the open source and agile communities remain almost
exclusively code-centric [6]. Other studies indicate that the use
of models is low in software engineering and mainly limited
to sketches for communication and coordination [7].

Several challenges to the adoption of modeling in practice
are reported by empirical studies, e.g., that modeling is not
perceived useful enough [8] or that it is only useful for very
complex systems [7]. Additionally, it has been reported that the
adoption of model based engineering of software is hampered,
at least in part, by inadequate academic preparation of young
software engineers [9]. This is supported by evidence that
students graduate from software engineering and computer

science programs perceiving UML and model driven method-
ologies as ineffective [10].

Interestingly, industrial use of models and modeling ed-
ucation seem to be facing one common challenge, namely
tooling. Many of the reported challenges for industry adop-
tion are related to the tools used for modeling, including
inadequate usability [11], [5], interoperability [12], [5], [13],
and complexity [12], [14]. Similarly, there exists anecdotal
and empirical evidence that tooling plays a decisive role in
modeling education [15], [16], [17], [18].

Due to the challenges arising from using industrial modeling
tools in the classroom, several educators have argued for
simplified tools in education, e.g., [19], [20], [21], [15]. Others
have argued that industrial-grade modeling tools can be used
given the right support and should in fact be used in order to
address the lack of adoption in industry [17]. However, while
there is substantial anecdotal evidence, empirical evidence on
the influence of modeling tools and tool support on the stu-
dents’ perception of modeling is lacking. Therefore, existing
conclusions on the need of educational tools are likely to be
influenced, at least to some extent, by personal preconceptions,
i.e., they may suffer from confirmation or self-serving bias.

To address the lack of empirical evidence, we present in this
paper a multiple-case study with two cases focusing on tools
and their support in modeling education. We aim to answer
the following research questions.

RQ1: How do students perceive modeling tools?
RQ2: How does the course context and the use of modeling

tools influence the students’ perception of modeling?
RQ3: Compared to industrial use, what characteristics do

modeling tools need when used in education?

We collected quantitative and qualitative data from undergrad-
uate students in two courses over two years in the U.S. and
in Sweden. To minimize confirmation bias and to ensure a
balanced interpretation of the collected data, the authors of this
paper come from two different camps; proponents of simplified
modeling tools in education and opponents thereof.

The paper is organized as follows. We present a background
and related works in the next two sections. We present our
multiple-case study design in Section III. The data collected
from the multiple-case study is presented in Section IV. We
present a discussion of the results in Section V. In Section

VI, we discuss threats to validity. We conclude the paper in
Section VII.

II. RELATED WORK

A. State of Modeling in Software Engineering Education

Computer Science and Software Engineering curricula focus
on programming and coding as the main problem-solving tool,
even though several curriculum recommendations promotes
the use of modeling [1]. Today, the majority of the curric-
ula introduce modeling and design concepts only lightly in
early courses. Model Driven Architecture (MDA) concepts are
typically introduced as advanced selective topics later in the
curriculum. In a previous work, Badreddin et al. conducted a
longitudinal study of seven Computer Science and Software
Engineering programs at four Universities [10]. The study
focused on students’ perception of modeling and MDA as they
progressed in their education from early bachelor years and to
their terminal educational degrees. Among other findings, the
study identified a consistent downward trend in perception of
MDA effectiveness in software development. Students gradu-
ate with increasing conviction that MDA is not an effective
software development methodology. This is potentially due to
the fact that overhead of model creation is not justified in the
case of small course-sized problems.

B. Educators’ Experiences

Experiences with the use of modeling tools of different
complexity and maturity, for different purposes, are a common
topic in education research.

Industry-grade tools are often described as unsuited for
education in the area of modeling. For example, Lethbridge
et al. [15] describe industry-grade tools as “unwieldy”. Sim-
ilarly, Akayama et al. [16] report from their experience that
students use language features they do not understand when
using industry-grade modeling tools. Paige et al. [18] describe
industry-grade tools as too cumbersome. While all of the above
publications are based on extensive teaching experience, they
lack empirical data that substantiate their statements.

Cabot and Kolovos [22] present their experiences1 along
with student evaluation data on two failed attempts to intro-
duce MDE to students. The authors emphasize the importance
of a first positive exposure to MDE, but also refer to several
shortcomings in tooling, such as a lack of documentation.

Liebel et al. [17] report based on evaluation data from two
years of a modeling course at the Bachelor level that industry-
grade tools can be used successfully in the classroom, given
sufficient and dedicated tool support.

How the use of tools compares to not using any tools at all
in modeling education is studied by Hammouda et al. [23],
who compare the use of modeling tools and pen and paper
modeling in education. The authors do not observe a clear
advantage for any of the two approaches.

Hence, while it is often claimed that industry-grade tools
are unsuited for education, there is lack of empirical evidence

1While the authors call it an “experiment”, they do not perform a controlled
experiment in the classical sense.

TABLE I
OVERVIEW OF EDUCATION-FOCUSED TOOLS

Tool Key Advantage
QuickUML [25] Limited features to ensure students use only features

they understand.
minimUML [26] Support for undo/redo to encourage explorative

learning.
Violet [27] Lightweight for early learners.
UMLet [21] Simple interface to facilitate fast UML models cre-

ation.
Dia [28] Simple drawing tool, easy to learn.
ArgoUML [20] Full featured to support system development.
StudentUML
[19]

Limited support for a small subset of UML.

Ideogramic UML
[29]

Support for interactive learning by transforming ges-
tures into formal UML models.

Umple [15] Textual modeling for seamless integration into OO
code.

MDELite [30] Teaching UML from a relational data base perspec-
tive.

UMLFactory UMLFactory referenced at www.UMLfactory.com is
no longer available.

yUML [31] Cloud based for sharing and collaboration.
TxtUML [32] Textual executable modeling.
WebUML [33] Web based for sharing of models.

beyond experience reports that substantiates or refutes this
claim.

C. Overview of Education-Focused Tools

The question of tool choice in education has been raised
just after the emergence of UML and its standardization.
One of the early concerns that have been raised at that
time was the adequacy of existing computing platforms for
running commercial modeling tools that had high memory
requirements [24]. Typical concerns are the complexity of
modeling tools, the steep learning curve, and the complexity
of the UML standard itself.

These concerns seem to have been a common motivation
for the majority of specialized UML tools in existence today,
despite the fact that industry is seemingly facing similar
challenges, and despite the lack of empirical evidence that
show any disadvantages of industrial modeling tools.

In Table I, we give an overview over a number of education-
focused UML modeling tools and their key advantages. We
chose these tools based on their exposure in the academic
modeling and MDE community, e.g., through existing publi-
cations.

III. METHOD

Our method is a multiple-case study with four units of
analysis. Case studies are appropriate where the object of study
is difficult to separate from its real-life context [34]. In the
case of university education, there are many factors that are
very difficult to control, if not impossible. For example, lecture
quality, students’ knowledge and preparation, social influence,
variations within students’ populations over different course
offerings, and variations in project assignments and assess-
ments.

Fig. 1. Case study design

We conducted a multiple-case study with two cases and
four units of analysis according to the classification in [35].
The cases are two third-year courses on software modeling
and design, one conducted in the USA and one in Sweden.
The four units of analysis (UoA) are the different years in
which the course was run. In the US case, the course was
run once with Umple [15] as a modeling tool and once
with Papyrus [36]. In the Sweden case, two course runs with
Papyrus were studied, once with dedicated tool support and
once without. Both cases contained a group project with a
final presentation. However, group sizes varied from three
to four students in the US case, and up to eight students
in the Sweden case. The course lasted 15 weeks in the US
case and 8 weeks in the Sweden case. Otherwise, conditions
were similar over the different units of analysis. For both
cases, quantitative data and qualitative data were collected.
Quantitative data are collected by means of anonymous and
voluntary questionnaires conducted towards the end of the
course. Qualitative data is collected by means of one-on-
one follow-up questions, and from the end of term course
evaluations.

A. Case Context

In both cases, we applied constructive alignment [37]. That
is, our students apply more than 80% of the material covered
during lectures in their projects2. Also, the students create
both behavioral and structural models. The final deliverables
must include a running system. This course design ensures
that the students receive some level of automated feedback on
their models, e.g., using code generation or executable models,
that helps them to understand implications of designs they
have created. When choosing a project topic, we did consider
realistic topics from industry, as suggested by [18]. However,

2Other content being guest lectures or motivation material not directly
related to the project.

we ultimately decided against an industrial project topic due
to time constraints and to lower complexity. We instead
prescribed a topic with minimum requirements. Students are
then required to extend the topic by conducting requirements
elicitation, analysis and design.

B. Data Collection

We collected quantitative3 and qualitative data through a
paper-based questionnaire at the end of the course, in order to
ensure that students’ responses are based on their experiences
with modeling and the assigned tool. Participation was both
voluntary and anonymous. In total, we collected 38 evaluation
surveys in UoA 1, 39 in UoA 2, 151 in UoA 3 and 141 in UoA
4. The following two subsections describe the quantitative and
qualitative data collected.

1) Quantitative Data: Anonymous questionnaires were dis-
tributed to students towards the end of the course. In all four
UoAs, students were asked to rate their agreement to the
following core questions.

Q1. <Tool> can be useful for modeling a large and complex
system.

Q2. The use of <Tool> affected our project positively.
Q3. It was easy to learn <Tool>.
Q4. UML can be useful for modeling a large and complex

system.
Q5. I observed benefits of creating models of our system prior

to writing the code.
Q6. The advantages of modeling outweigh the creation effort

of the models.

Each question had 5-scale Likert choices: Strongly Agree,
Agree, Neutral, Disagree, Strongly Disagree, and Don’t know.
Missing and Don’t know answers are excluded from the graphs
in the following.

2) Qualitative Data: Qualitative data was collected from
open-ended questions and additional comments space provided
in the questionnaires and, in the US case, from one-on-one
discussions and interviews with students related to UML or
the tool. Students voluntarily opted for the post-questionnaire
interviews, by either writing their email addresses, or by
showing up at pre-set scheduled time during the last two weeks
of the semester. Additional qualitative data was collected from
end of term course evaluations. We coded the qualitative data
loosely following a grounded-theory approach [38].

IV. RESULTS

In this section, we present the quantitative data results for
both cases. The results are presented as follows. For each case,
data for both its units of analysis are presented together. Data
is presented under two classification; tool related data and
UML related data. Qualitative data are used for interpreting
the results in Section V.

3The quantitative raw data is published at http://grischaliebel.de/data/
research/LBH-MBE-edu.zip

3.0	

36.4	

15.2	

33.3	

12.1	
3.4	 0.0	

10.3	

48.3	
37.9	

Strongly	
Agree	

Agree	 Neutral	 Disagree	 Strongly	
Disagree	

Q1.	<Tool>	can	be	useful	for	modeling	a	
large	and	complex	system	(in	%).	

UoA1	 UoA2	

Fig. 2. Tool’s usefulness for creating large systems (Case I)

A. Case I: The US Case

In this case, students were instructed to use a modeling tool
to implement their project (Umple [15] in UoA 1 and Papyrus
[36] in UoA 2). They could choose from a list of pre-defined
topics, e.g., a university registration system or a canal lock
system. Students were instructed to create structural models
(class diagrams) and behavioral models (state machines), and
provide implementations of actions using Java. The project
high-level requirements were presented in week two of the
courses. Students presented their project design and imple-
mentation in week fourteen of the course, and submitted a
final project report in week fifteen.

Students were presented with a demonstration of the tool
by the course instructor, and were provided with optional two
hands-on lab sessions given by the course teaching assistant.

1) Tool Data: We asked the students to rate their agreement
to three statements regarding the use of the tool (Umple in
UoA 1 and Papyrus in UoA 2), as discussed in Section III-B.
The results are depicted in Fig. 2, Fig. 3, and Fig. 4.

In UoA 1, the students’ views regarding the usefulness of
the tool are somewhat balanced, with 40% of the students
agreeing that Umple is useful for the development of large and
complex systems and 46% disagreeing. In UoA 2, the view
is significantly worse. Here, only 3.4% agree that Papyrus is
effective for large and complex systems and 86% disagree.

There is a clear endorsement for Umple in UoA 1 regarding
its impact on the project, with 65% agreeing that the tool
affected their project positively and about 20% disagreeing.
In UoA 2, the picture is similar to the previous question.
Only 10% agree that Papyrus had a positive effect, while 81%
disagree.

In UoA 1, 65% agree and 19% disagree that Umple is easy
to learn. The view in UoA 2 is again more negative, with 39%
agreeing and 48% disagreeing that Papyrus is easy to learn.

2) UML Data: We asked the students to rate their agree-
ment to three statements regarding the UML, as discussion
Section III-B. The results are depicted in Fig. 5, Fig. 6, and
Fig. 7.

About 60% of students agree in UoA 1 that UML is useful
for large and complex systems, while only 18% disagree. In
UoA 2, this picture changes considerably to only 21% agreeing
and 68% disagreeing.

32.0	
40.0	

20.0	

4.0	 4.0	6.3	 3.1	
9.4	

43.8	
37.5	

Strongly	
Agree	

Agree	 Neutral	 Disagree	 Strongly	
Disagree	

Q2.	The	use	of	<Tool>	affected	our	
project	posiHvely	(in	%).		

UoA1	 UoA2	

Fig. 3. Tool influence (Case I)

29.0	
35.5	

16.1	

6.5	
12.9	12.9	

25.8	

12.9	

25.8	
22.6	

Strongly	
Agree	

Agree	 Neutral	 Disagree	 Strongly	
Disagree	

Q3.	It	was	easy	to	learn	<Tool>	(in	%).		

UoA1	 UoA2	

Fig. 4. Easiness to learn tool (Case I)

17.9	

42.9	

21.4	

10.7	 7.1	8.8	 11.8	 11.8	

35.3	 32.4	

Strongly	
Agree	

Agree	 Neutral	 Disagree	 Strongly	
Disagree	

Q4.	UML	can	be	useful	for	modeling	a	
large	and	complex	system	(in	%).	

UoA1	 UoA2	

Fig. 5. UML’s usefulness for creating large systems (Case I)

Similarly, the view on benefits of creating models prior to
writing code is almost mirrored in UoA 1 and UoA 2. While
78% agree that creating models before coding is effective and
22% disagree in UoA 1, only 30% agree and 59% disagree in
UoA 2.

Compared to the previous two questions, the students’ view
does not change significantly between UoA 1 and UoA 2
regarding the modeling trade-off. In UoA 1, 21% agree that
the advantages of modeling outweigh the creation effort, and
about 64% disagree. In UoA 2, the picture is only slightly
more negative with 13% agreeing and 70% disagreeing.

Overall, one observes that in UoA 1 the students clearly see
the benefit of UML, but are somewhat sceptical regarding the
effort involved. In UoA 2, this picture is changed completely
towards a rather negative view of UML and modeling.

44.4	
33.3	

0.0	
11.1	 11.1	

18.5	
11.1	 11.1	

25.9	
33.3	

Strongly	
Agree	

Agree	 Neutral	 Disagree	 Strongly	
Disagree	

Q5.	I	observed	benefits	of	creaCng	
models	of	our	system	prior	to	wriCng	the	

code	(in	%).		

UoA1	 UoA2	

Fig. 6. Benefits of modeling (Case I)

6.1	
15.2	 15.2	

30.3	 33.3	

6.7	 6.7	
16.7	

33.3	 36.7	

Strongly	
Agree	

Agree	 Neutral	 Disagree	 Strongly	
Disagree	

Q6.	The	advantages	of	modeling	
outweigh	the	creaCon	effort	of	the	

models	(in	%).		

UoA1	 UoA2	

Fig. 7. Modeling tradeoff (Case I)

B. Case II: The Sweden Case

In this case, students used Papyrus to realize an 8-week
project. During this project, students created in project groups
several structural and behavioral UML models on different
abstraction levels, e.g., domain models for the purpose of
communication, class diagrams for design, or state machine
diagrams to illustrate use cases. From the class diagrams, the
students generated code using the Eclipse Modeling Frame-
work [39] code generation capabilities and implemented a
number of central use cases. All students are required to model
and implement a hotel booking system, but only very vague
requirements were stated initially, which the groups then had
to refine and enrich with further features and/or requirements.
Student groups had to attend weekly compulsory supervision
sessions with an assigned supervisor.

Papyrus was introduced in two dedicated lectures, which
were also recorded so that students could later re-watch the
presentations. In UoA 3, one dedicated teacher knowledgeable
in Papyrus and the course material provided dedicated support
via email. In UoA 4, this additional support was not available
due to a different allocation of teaching hours.

The results of the survey are presented in the following,
separately for the three questions targeting Papyrus and those
targeting UML.

1) Tool Data: We asked the students to rate their agreement
to three statements regarding the use of Papyrus, namely the
tool’s effectiveness for development of large and complex
systems (Fig. 8), the tool’s usefulness in this specific project
(Fig. 9), and how easy it was to learn the tool (Fig. 10).

15.5	
21.8	 24.5	 22.7	

10.9	
6.4	

32.6	

24.8	 22.7	

12.8	

Strongly	
Agree	

Agree	 Neutral	 Disagree	 Strongly	
Disagree	

Q1.	<Tool>	can	be	useful	for	modeling	a	
large	and	complex	system	(in	%).	

UoA3	 UoA4	

Fig. 8. Tool’s usefulness for creating large systems (Case II)

3.3	

27.8	

41.7	

21.9	

3.3	2.8	

14.2	

33.3	
38.3	

10.6	

Strongly	
Agree	

Agree	 Neutral	 Disagree	 Strongly	
Disagree	

Q2.	The	use	of	<Tool>	affected	our	
project	posiGvely	(in	%).		

UoA3	 UoA4	

Fig. 9. Tool influence (Case II)

The students’ view of the usefulness of Papyrus to develop
large and complex systems is different in the two UoAs. In
UoA 3, about 15% strongly agree and 22% agree that Papyrus
is useful for this purpose. In UoA 4, a similar proportion of
students generally agree to the statement, but the percentage of
students strongly agreeing is lower than in UoA 4 (only 6.4%
strongly agree and 32.6% agree). Similarly, the percentage of
students strongly disagreeing to the statement has increased
by 2% to now 12.8%.

In UoA 3, there is no agreement among the students as to
how useful Papyrus was for the project (31% (strongly) agree
that it was useful, 25% (strongly) disagree). A much clearer
picture can be seen for the statements in UoA 4, with 49%
(strongly) disagreeing and only 17% (strongly) agreeing.

While not as strong as for the previous question, the picture
for how easy it was to learn Papyrus is similar. In UoA 3, the
students’ evaluation is balanced with 29% (strongly) agreeing
that it was easy and 33% (strongly) disagreeing. In UoA 4,
this view has changed to the negative with only 11% (strongly)
agreeing and 44% (strongly) disagreeing.

2) UML Data: The students’ picture of UML is consider-
ably more positive than their picture of Papyrus. We asked the
students to rate their agreement to three statements regarding
the UML, namely UML’s usefulness for development of large
and complex systems (Fig. 11), the benefit of creating models
prior to coding (Fig. 12), and the tradeoff between modeling
benefit and effort (Fig. 13).

In UoA 3, 86% of students agree that UML is useful
for large and complex systems and only 1% of the students

0.7	

28.5	
35.1	

28.5	

4.6	
1.4	

9.9	

41.8	
37.6	

6.4	

Strongly	
Agree	

Agree	 Neutral	 Disagree	 Strongly	
Disagree	

Q3.	It	was	easy	to	learn	<Tool>	(in	%).		

UoA3	 UoA4	

Fig. 10. Easiness to learn tool (Case II)

62.9	

23.2	
9.9	

1.3	 0.0	

68.8	

20.6	
6.4	 1.4	 0.7	

Strongly	
Agree	

Agree	 Neutral	 Disagree	 Strongly	
Disagree	

Q4.	UML	can	be	useful	for	modeling	a	
large	and	complex	system	(in	%).	

UoA3	 UoA4	

Fig. 11. UML’s usefulness for creating large systems (Case II)

55.6	

31.1	

10.6	
0.0	 0.0	

61.7	

25.5	
7.8	 2.8	 0.7	

Strongly	
Agree	

Agree	 Neutral	 Disagree	 Strongly	
Disagree	

Q5.	I	observed	benefits	of	creaCng	
models	of	our	system	prior	to	wriCng	the	

code	(in	%).		

UoA3	 UoA4	

Fig. 12. Benefits of modeling (Case II)

disagree. In UoA 4, the agreement increases to 89% of the
students (strongly) agreeing that UML is useful for modeling
a large and complex system.

Similar figures can be observed with respect to the benefits
of creating models. In UoA 3, 87% agree that creating models
before writing code was beneficial and not a single student
disagrees. The same proportion of students agrees to the
statement in UoA 4, but 3.5% disagree.

While still extremely positive, the views on the tradeoff
between effort and benefit of modeling are slightly lower. In
UoA 3, 69% agree that the advantages of modeling outweigh
the creation effort, with only 4% disagreeing. Similarly, in
UoA 4 66% (strongly) agree, but 11.3% disagree.

Overall, the evaluations of the UML statements can be seen
as a rather strong endorsement of UML, especially given the
balanced or negative evaluations of Papyrus. In particular, it is
extremely interesting to observe that the evaluation of UML

25.2	

43.7	

23.2	

2.6	 1.3	

24.8	

41.1	

19.9	
9.2	

2.1	

Strongly	
Agree	

Agree	 Neutral	 Disagree	 Strongly	
Disagree	

Q6.	The	advantages	of	modeling	
outweigh	the	creaEon	effort	of	the	

models	(in	%).		

UoA3	 UoA4	

Fig. 13. Modeling tradeoff (Case II)

remains largely unchanged compared to UoA 3, despite the
strong decline in the Papyrus evaluations.

V. OBSERVATIONS AND ANALYSIS

In this section, we provide observations and analysis of the
entire data sets collected from both cases, including all four
units of analysis. The observations and analysis are based on
both quantitative and qualitative data sets. We then summarize
this discussion in terms of our three research questions.

A. Model Based Engineering versus Model Driven Engineer-
ing

Both MBE and MDA involve creation and manipulation of
models that abstract the system under development. However,
in MDA, the focus is on system development and code
generation. As such, models must have precise semantics
to aid in code generation (as well as other artifacts such
as test cases). In Case I where the focus was primarily on
system development, two factors came into play; 1) tool choice
and 2) overhead incurred to create and manage models. Our
findings suggest that to support teaching of MDA effectively,
the tool must support only a subset of UML with unambiguous
semantics, and one that contributes directly to generating
executable artifacts (code and tests). This could explain why
Umple’s overall perception was higher than Papyrus. In this
context, students perceive UML as key in its support for
code generation. Consequently, UML perception is greatly
influenced by perception of effectiveness of the generated
artifacts.

In Case II, the students’ tasks involved, in addition to code
generation, also modeling of requirements, analysis and design
on a less formal level. As such, code generation becomes
a secondary goal. This is where students tend to perceive
UML more favourably. In fact, students’ perception of the tool
and UML are both positive when more informal modeling is
involved. This finding is also consistent with a recent analysis
of software engineering programs that demonstrates positive
perception of UML when used for informal requirement
gathering and analysis [10]. Hence, one possible conclusion re-
sulting from this observation is that to improve students’ view
of modeling, a mix of informal and formal modeling should
be included. Furthermore, as already discussed by Börstler
et al. [1] in 2012, what is taught in modeling courses still

differs greatly. As a result of this, researchers and educators
should take great care in explaining their course context when
publishing or discussing software modeling. As common terms
in the area such as MDE or MBE can be ambiguous, a possible
way to discuss course content could be the initial taxonomy
of what is taught by Kuzniarz and Börstler [40].

B. Project Domain

In Case I, the project domain was familiar to students, to
promote the focus on the system design and implementation.
The problem domain and requirements were given, or assumed
by the students. In Case II, only a vague problem description
was given to the students, who then were required to define
the domain and the requirements themselves. As such, there
was initially a focus on exploration and understanding of the
problem domain. This seems to have a positive impact on
the students’ perception of UML in general. As can be seen
in the quantitative data, the UML perception of the students
is very high in both UoA 3 and UoA 4. Additionally, the
qualitative data supports this observation. For example, several
students reported that UML is useful in defining requirements
and achieving a common understanding of the problem within
the project group.

This observation ties into the discussion on whether or not
realistic problems should be used in student modeling projects.
While Paige et al. [18] argue that realistic project topics are
important to motivate students, we here (and earlier in [17])
take the standpoint that this imposes unnecessary complexity
on students. However, the above observation suggests that the
topic should encourage students to explore and gain further
insights through the use of models. Hence, the topic needs to
contain some uncertainty and complexity.

Finally, the suitability of the modeling tool(s) for the given
project domain and scope might clearly have an influence
on the students’ perception. Clearly, a general-purpose UML
modeling tool such as Papyrus is more suited in a project
that includes the entire development chain including project
scoping, requirements analysis, design, and code generation
and implementation. In contrast, Umple might have been more
suitable for a narrow project scope as in Case I, where the
focus is on code generation and design models. Hence, it could
be that the suitability of the tools in Case I for the given project
has a larger impact on the students’ perception than the tool
quality, e.g., with respect to usability, itself.

C. Delivering a Working System and Support for Round-Trip
Engineering

To develop a complete system, collaboratively, implies that
models and code must be interchanged frequently. In UoA
2, the code generation facilities used by the students did
not support effective re-generation and the students had to
implement their own workarounds to avoid overwriting of their
code in the face of changes in the design. Students would
store code artifacts in separate files, and merge after iterative
forward engineering (generating skeleton code from models).

This seems to have significantly hampered the students’ per-
ception of UML and the tooling. In contrast, Umple, as used
in UoA 1, tends to merge both model and code in a single
artifact, significantly easing the need for forward and reverse
engineering. This could explain the large differences in UML
perception between UoA 1 and UoA 2.

In Case II, the students used the code generation facilities
of EMF. While these are less than ideal for generating code
from UML models, there is support for re-generation and
protected regions in the code. Therefore, there is no need
for workarounds to protect existing, hand-written code. This
could explain why the students’ view of Papyrus is much
more positive compared to UoA 2. Additionally, we can tell
from comments in the surveys that in Case II, several students
appreciated the added value from re-generation after they had
understood and mastered the process. This shows that while
the tool does not need to be easy from the beginning, it has
to provide the students with (perceived) added value by the
end of their project. Otherwise, students may perceive it as
cumbersome, and an obstacle in their way of being more
effective.

D. Expert and Dedicated Tool Support

Dedicated tool support seems to have a substantial impact
on students’ overall perception. This can be observed in
the comparison of UoA3 and UoA4. In UoA 3, there was
dedicated support for Papyrus and code generation in Papyrus,
including videos that students could watch repeatedly. The
tool evaluation is consequently balanced, which could be seen
favourably given the complexity of the tool and of code
generation. More importantly, the change from UoA 3 to UoA
4 is statistically significant (p < 0.01 for all questions, Mann-
Whitney U test [41]) in all three tool questions. Additionally,
the dedicated support was emphasized in the qualitative eval-
uation data by a large amount of students in UoA 3. Given
that the only change between the UoAs is the amount of tool
support, this is a rather interesting result. It is essential to
point out here that the tool support was in Case II given by
a teacher within the course, not by the tool vendor or the
community. As we dicsuss already in [17], we regard this as
essential in order to give the students the right support for the
given project. In fact, it could explain Cabot and Kolovos’ [22]
negative experience with tool support, as they seem to have
relied mainly on the tool vendors in their study on teaching
MDE.

Interestingly, the UML evaluation is consistent in the two
UoAs and seemingly unaffected by the support. Given this
result, it could be reasoned that the tool support is not
detrimental, as the perception of UML -which is the part the
learning outcome relates to- remains unchanged. However, if
the support is insufficient, students might never reach the point
of mastery where the tool provides added value, as discussed
in the previous section. Additionally, we believe that a negative
view of the tool might seriously hamper the students’ learning,
as discussed in the following section.

E. Students’ Perception, Feedback, and Learning Outcomes

In two out of four UoAs, the tool evaluations can be viewed
as being negative, in one UoA the tool evaluation is balanced
and only in UoA 1 the tool evaluation is truly positive. This
observation together with Hammouda et al.’s findings that
there is no significant difference between using a tool and
using just pen and paper for modeling [23] raises the question
whether tools should at all be used in modeling education.
As two of the co-authors of this paper already discussed in
[17], we believe that code generation is an important aspect
of teaching modeling. The reason for this is that students
receive automated feedback on their models, which helps them
relate to their model using an artifact they are already familiar
with, namely source code. This kind of feedback positively
affects the learning outcomes, which could not be satisfactory
achieved using a pen and paper.

The interesting question is then why the students perceive
the tools negatively, especially for code generation purposes,
even though we know from observations and from education
literature that feedback supports learning. One explanation is
that the tool exposes a lack of knowledge, or deficiencies in
the model under development. If the students make mistakes
in their models that they later use for code generation, the
tool exposes this directly and immediately. In contrast, for
imprecise models, there is much less feedback. Possibly, this
leads to a feeling of knowledge’ [42], a feeling that they
understood the model, while they actually did not. Feeling of
knowledge is often linked to situations where we think we can
answer a question because it looks familiar or contains several
familiar terms [42]. In the case of modeling, it might be that
the students are familiar enough with the diagram types, e.g.,
through lectures, that they believe their solution is good. If this
explanation is in fact valid, this would be a strong argument
to use tools that provide automated feedback in modeling
education, even if it results in negative perceptions.

Another possible explanation is the kind of feedback pro-
vided by modeling tools. In the case of Papyrus, the feedback
students receive is often in the form of errors during design or
code generation. However, we can observe that our students
dislike this kind of feedback, an observation supported by
Weaver [43] for written feedback. Similarly, several studies
show that negative feedback in programming environments,
e.g., compiler errors, heavily affect self-motivation and other
important factors in students’ learning, e.g., [44], [45], [46].
At the same time, motivation has been shown to have a
significant effect on programming learning [47]. Hence, if
the modeling tools affect motivation in a negative way due
to the nature of feedback provided, this could have profound
effects on learning. Therefore, it is valuable to investigate the
use of more encouraging feedback customized particularly for
modeling education, similar to approaches used in program-
ming education, e.g., in [48]. While this can take the form of
specialized modeling tools, it could also be related to the form
of exercises performed by the students, e.g., using the extreme
apprenticeship method proposed by Vihavainen et al. [49].

The nature of modeling feedback, or lack thereof, could
explain why the perception of Umple in UoA 1 was uniquely
positive (even when the UML data was not). Umple’s feedback
is based on errors found in the generated Java code. As
students are familiar with Java errors and as Umple shows the
errors usually in relation to the originating modeling elements,
students are able to fix them with ease.

F. Summary

Summarizing the discussion, we can answer our three
research questions as follows.

As discussed in related work on modeling education, mod-
eling tools are often perceived as cumbersome by students
(RQ1). However, our data shows that this perception is highly
related to several factors. First, the tool support given in the
course and how closely this support relates to the students’
projects is of importance, as clearly seen in Case II. Secondly,
it plays an important role whether or not the models created by
students have to be formal, e.g., to allow for code generation.
If formal models are required, this can lower the students’
perceptions substantially. This suggests that when teaching
modeling, there should be a balance between informal and
formal models, without a focus solely on code generation.
Finally, we observe that if formal models are used for code
generation or other models transformations, the effectiveness
of the resulting artifacts is important. If students clearly see
that the process of transforming models into code supports
their work even if this requires getting used to the process
of doing so, it will positively affect their perception of the
tools. If they instead feel like it is only an obstacle, they will
perceive the tools as cumbersome and ultimately as a burden.

With respect to the students’ perception of modeling, we
observe that the course context the use of modeling tools
plays a key role (RQ2). The use of informal models in Case
II positively affected the students’ perception of modeling,
even to the extent that the perception of the modeling tool
was secondary. In contrast, a strong focus on code generation
in Case II seemingly affect the students’ view of modeling
negatively. Therefore, we need to distinguish in more detail
what we mean by modeling education and to investigate in
greater depth how we can support students and convey the
material better in the different approaches.

Finally, there is a large overlap between modeling tool
perception in industry and in education (RQ3). For example,
usability is named in many studies that investigate modeling
tools in industry, e.g., in [11], [5], as well as in modeling
education, e.g., in [15], [16], [17], [18]. Similarly, it is a re-
occuring topic in our own data. However, we also observe
several differences in the perceptions of modeling tools. While
characteristics such as interoperability [5], [12], [50], handling
large models [13], or organisational aspects [51] play key roles
in industry, this is not the case in education. For example,
interoperability or handling large models play a minor role as
students rarely work on projects complex enough to include
multiple tools or modeling languages. In contrast, other tool
characteristics are relevant. For example, we observed in our

study the need for positive feedback to motivate students.
Similarly, code generation and model transformation facilities
might not need to be as powerful as for industrial use, but
rather quick and effective for small-scale projects.

VI. VALIDITY THREATS

In the following, we discuss the threats to validity in our
case study and countermeasures we took to reduce them.
We follow the categorization by Runeson et al. into External
Validity, Internal Validity, Construct Validity and Reliability
[34].

A. External Validity

By design, case studies have a very limited external validity,
stemming from a lack of control and from the fact that a
topic is studied within its context. Therefore, we cannot claim
that our findings extend beyond the studied cases. Instead,
we try to describe the case context as detailed as possible, in
order to allow readers to understand our environment and to
decide whether or not the findings might generalize to their
own education context.

B. Internal Validity

The students in our two cases come from a variety of
different cultural backgrounds. This could influence the way
they answer evaluation questionnaires. For example, the low
hierarchy in Scandinavian society could mean that these
students are more likely to voice concerns or annoyances in
anonymous questionnaires. Similarly, students from another
background might be overly positive or negative with their
assessment. We believe that the collection of qualitative data
in addition to quantitative data helps us to lower this threat, as
we could use the feedback to evaluate our research questions
using concrete suggestions in contrast to a score only.

C. Construct Validity

To avoid bias, we used identical questionnaires within each
case. Additionally, the questionnaires across the two cases are
close to identical, with only minor differences in phrasing.
For example, in the US case the students were asked how
useful the respective tool was for the project, while in the
Swedish case the students were asked how the tool affected
their project. While this might affect the outcome, we believe
that other factors, such as the background and the teachers,
will likely have a much stronger impact on the outcome. Still,
this threat cannot be ruled out entirely.

D. Reliability

As discussed in the internal and construct validity sections,
the results are most likely to some extent dependent on the
student samples (and their backgrounds) and the teachers
giving the course. While we cannot influence the students’
characteristics, we try to make the course content as transpar-
ent as possible in order to enable replication and reproduction
of our study. In particular, the introduction lectures to Papyrus

in the Swedish case are available as screen casts online4.
Similarly, the questions we asked the students are discussed
in Section III-B and thus transparent.

VII. CONCLUSION

In this paper, we characterize some of the challenges and
opportunities in modeling education using a case study method
with two cases, one course on MDA in the US and one course
on MBE in Sweden. We focused on students’ perceptions of
tools and modeling in general, supported by both qualitative
and qualitative data.

We observe that students’ perception of modeling effec-
tiveness is influenced by multiple factors. One key finding in
this work that students’ perception tends to be more negative
when the tool provides negative feedback, such as compiler
errors in the generated code. Therefore, modeling tools tailored
for education should consider to include positive feedback
mechanisms, such as proposing improvements. While it might
also be possible to not provide any feedback, this could
lead to a ’feeling of knowledge’ instead of actual modeling
knowledge. A second finding is that the students perception
of modeling seems to be more positive when informal models
for early and ambiguous tasks such as requirements analysis
or elicitation are part of the course content. If the projects
are mainly focusing on generating executable system artifacts,
models must be precise and have unambiguous semantics in
order to support generation. As such, underlying tools require
details and precise models, and can usually expose immediate
deficiencies in the models. While this often frustrates students
and can significantly hamper their perception of the tool, it
could significantly improve learning outcomes. As such, con-
structive education-tailored feedback becomes instrumental.

REFERENCES

[1] J. Börstler, L. Kuzniarz, C. Alphonce, W. B. Sanders, and M. Smialek,
“Teaching software modeling in computing curricula,” in Proceedings
of the Final Reports on Innovation and Technology in Computer Science
Education 2012 Working Groups, 2012, pp. 39–50.

[2] W. J. Dzidek, E. Arisholm, and L. C. Briand, “A realistic empirical
evaluation of the costs and benefits of uml in software maintenance,”
IEEE Transactions on Software Engineering, vol. 34, no. 3, pp. 407–432,
May 2008.

[3] R. Soley et al., “Model driven architecture,” OMG white paper, vol.
308, no. 308, p. 5, 2000.

[4] M. Brambilla, J. Cabot, and M. Wimmer, Model-Driven Software
Engineering in Practice. Morgan & Claypool Publishers, 2012.

[5] G. Liebel, N. Marko, M. Tichy, A. Leitner, and J. Hansson, “Model-
based engineering in the embedded systems domain: an industrial survey
on the state-of-practice,” Software & Systems Modeling, pp. 1–23, 2016.

[6] O. Badreddin, T. C. Lethbridge, and M. Elassar, “Modeling practices
in open source software,” in Open Source Software: Quality Verifica-
tion: 9th IFIP WG 2.13 International Conference, OSS 2013, Koper-
Capodistria, Slovenia, June 25-28, 2013. Proceedings, E. Petrinja,
G. Succi, N. El Ioini, and A. Sillitti, Eds. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2013, pp. 127–139.

[7] T. Gorschek, E. Tempero, and L. Angelis, “On the use of software design
models in software development practice: An empirical investigation,”
Journal of Systems and Software, vol. 95, pp. 176–193, 2014.

[8] M. Torchiano, F. Tomassetti, F. Ricca, A. Tiso, and G. Reggio, “Prelimi-
nary Findings from a Survey on the MD* State of the Practice,” in Proc.
of 2011 International Symposium on Empirical Software Engineering
and Measurement (ESEM), Sept 2011, pp. 372–375.

4https://www.youtube.com/channel/UCefaOkE8GpvBQjPGUndL7zQ

[9] E. Stiller and C. LeBlanc, “Effective software engineering pedagogy,”
J. Comput. Sci. Coll., vol. 17, no. 6, pp. 124–134, May 2002.

[10] O. B. Badreddin, A. Sturm, A. Hamou-Lhadj, T. Lethbridge, W. Dixon,
and R. Simmons, “The effects of education on students’ perception of
modeling in software engineering.” in HuFaMo@ MoDELS, 2015, pp.
39–46.

[11] P. Mohagheghi, W. Gilani, A. Stefanescu, M. Fernandez, B. Nordmoen,
and M. Fritzsche, “Where does model-driven engineering help? ex-
periences from three industrial cases,” Software & Systems Modeling,
vol. 12, no. 3, pp. 619 – 639, July 2013.

[12] S. Kirstan and J. Zimmermann, “Evaluating costs and benefits of
model-based development of embedded software systems in the car
industry–results of a qualitative case study,” in Proc. of Workshop ”From
code centric to model centric: Evaluating the effectiveness of MDD
(C2M:EEMDD)”, 2010.

[13] P. Baker, S. Loh, and F. Weil, “Model-Driven Engineering in a Large
Industrial Context – Motorola Case Study,” in Proc. of ACM/IEEE 8th
International Conference On Model Driven Engineering Languages And
Systems. Springer Berlin Heidelberg, 2005.

[14] A. Forward, O. Badreddin, and T. C. Lethbridge, “Perceptions of
software modeling: a survey of software practitioners,” in 5th workshop
from code centric to model centric: evaluating the effectiveness of MDD
(C2M: EEMDD), 2010.

[15] T. Lethbridge, G. Mussbacher, A. Forward, and O. Badreddin, “Teaching
UML using umple: Applying model-oriented programming in the class-
room,” in Proc. of 24th IEEE-CS Conference on Software Engineering
Education and Training (CSEE T), May 2011, pp. 421–428.

[16] S. Akayama, B. Demuth, T. C. Lethbridge, M. Scholz, P. Stevens,
and D. R. Stikkolorum, “Tool use in software modelling education,”
in ACM/IEEE 16th Int. Conf. on Model Driven Engineering Languages
and Systems – Educators Symposium, vol. 1134. CEUR-WS.org, 2013.

[17] G. Liebel, R. Heldal, and J. P. Steghfer, “Impact of the use of industrial
modelling tools on modelling education,” in 2016 IEEE 29th Inter-
national Conference on Software Engineering Education and Training
(CSEET), 2016, pp. 18–27.

[18] R. F. Paige, F. A. Polack, D. S. Kolovos, L. M. Rose, N. Matragkas,
and J. R. Williams, “Bad modelling teaching practices,” in ACM/IEEE
17th Int. Conf. on Model Driven Engineering Languages and Systems
– Educators Symposium, 2014.

[19] E. Ramollari and D. Dranidis, “Studentuml: An educational tool sup-
porting object-oriented analysis and design,” Proc. of 11th Panhellenic
Conference on Informatics, pp. 363–373, 2007.

[20] “ArgoUML,” last accessed March 2017. [Online]. Available: http:
//argouml.tigris.org

[21] “UMLet, a Free UML tool for fast UML Diagrams,” last accessed
March 2017. [Online]. Available: http://www.umlet.com

[22] J. Cabot and D. S. Kolovos, “Human factors in the adoption of
model-driven engineering: An educator’s perspective,” in Advances in
Conceptual Modeling: ER 2016 Workshops, AHA, MoBiD, MORE-BI,
MReBA, QMMQ, SCME, and WM2SP, Gifu, Japan, November 14–17,
2016, Proceedings, S. Link and J. C. Trujillo, Eds., 2016, pp. 207–217.

[23] I. Hammouda, H. Burden, R. Heldal, and M. R. V. Chaudron, “Case
tools versus pencil and paper,” in ACM/IEEE 17th Int. Conf. on Model
Driven Engineering Languages and Systems – Educators Symposium,
2014.

[24] P. Stevens, “Updating the software engineering curriculum at edinburgh
university,” in Proc. Software Engineering Education Symposium SEES,
vol. 98, pp. 188–193.

[25] E. Crahen, C. Alphonce, and P. Ventura, “Quickuml: A beginner’s uml
tool,” in Companion of 17th Annual ACM SIGPLAN Conference on
Object-oriented Programming, Systems, Languages, and Applications.
ACM, 2002, pp. 62–63.

[26] S. A. Turner, M. A. Pérez-Quiñones, and S. H. Edwards, “minimuml:
A minimalist approach to uml diagramming for early computer science
education,” J. Educ. Resour. Comput., vol. 5, no. 4, Dec. 2005.

[27] “Violet,” last accessed March 2017. [Online]. Available: http:
//alexdp.free.fr/violetumleditor

[28] “Dia Diagram Editor,” last accessed March 2017. [Online]. Available:
http://dia-installer.de/shapes/UML/index.html.en

[29] K. M. Hansen and A. V. Ratzer, “Tool support for collaborative teaching
and learning of object-oriented modeling,” SIGCSE Bull., vol. 34, no. 3,
pp. 146–150, Jun. 2002.

[30] D. Batory and M. Azanza, “Teaching model-driven engineering from

a relational database perspective,” Software & Systems Modeling, pp.
1–25, 2015.

[31] T. Harris, “YUML,” last accessed March 2017. [Online]. Available:
http://yuml.me

[32] G. Dévai, G. F. Kovács, and Á. An, “Textual, executable, translatable
uml.” in OCL@ MoDELS, 2014, pp. 3–12.

[33] D. R. Stikkolorum, T. Ho-Quang, and M. R. V. Chaudron, “Revealing
students’ uml class diagram modelling strategies with webuml and
logviz,” in 2015 41st Euromicro Conference on Software Engineering
and Advanced Applications, 2015, pp. 275–279.

[34] P. Runeson, M. Höst, A. Rainer, and B. Regnell, Case Study Research
in Software Engineering. Wiley Blackwell, 2012.

[35] R. K. Yin, Case study: design and methods, 4th ed., ser. Applied social
research methods series. Sage, 2009.

[36] S. Gérard, C. Dumoulin, P. Tessier, and B. Selic, 19 Papyrus: A UML2
Tool for Domain-Specific Language Modeling, 2010, pp. 361–368.

[37] J. Biggs, “Enhancing teaching through constructive alignment,” Higher
Education, vol. 32, no. 3, pp. 347–364, 1996.

[38] O. Badreddin, “Thematic review and analysis of grounded theory
application in software engineering,” Advances in Software Engineering,
vol. 2013, p. 4, 2013.

[39] D. Steinberg, F. Budinsky, E. Merks, and M. Paternostro, EMF: eclipse
modeling framework. Pearson Education, 2008.

[40] L. Kuzniarz and J. ürgen Börstler, “Teaching modeling: An initial
classification of related issues,” in Proceedings of the 7th Educators
Symposium @ MODELS 2011, vol. 52, 2011, pp. 1–10.

[41] H. B. Mann and D. R. Whitney, “On a test of whether one of two
random variables is stochastically larger than the other,” The Annals of
Mathematical Statistics, vol. 18, no. 1, pp. 50–60, 1947.

[42] L. M. Reder and F. E. Ritter, “What determines initial feeling of
knowing? familiarity with question terms, not with the answer.” Journal
of Experimental Psychology: Learning, memory, and cognition, vol. 18,
no. 3, p. 435, 1992.

[43] M. R. Weaver, “Do students value feedback? student perceptions of
tutors written responses,” Assessment & Evaluation in Higher Education,
vol. 31, no. 3, pp. 379–394, 2006.

[44] P. Kinnunen and B. Simon, “Experiencing programming assignments
in cs1: the emotional toll,” in Proceedings of the Sixth international
workshop on Computing education research, 2010, pp. 77–86.

[45] A. J. Ko, B. A. Myers, and H. H. Aung, “Six learning barriers in end-
user programming systems,” in Visual Languages and Human Centric
Computing, 2004 IEEE Symposium on, 2004, pp. 199–206.

[46] A. J. Ko, “Attitudes and self-efficacy in young adults’ computing
autobiographies,” in Visual Languages and Human-Centric Computing,
2009. VL/HCC 2009. IEEE Symposium on. IEEE, 2009, pp. 67–74.

[47] S. Bergin and R. Reilly, “The influence of motivation and comfort-level
on learning to program,” in Proceedings of the PPIG, vol. 17, 2005, pp.
293–304.

[48] M. J. Lee and A. J. Ko, “Personifying programming tool feedback
improves novice programmers’ learning,” in Proceedings of the seventh
international workshop on Computing education research, 2011, pp.
109–116.

[49] A. Vihavainen, M. Paksula, and M. Luukkainen, “Extreme apprentice-
ship method in teaching programming for beginners,” in Proceedings
of the 42nd ACM technical symposium on Computer science education,
2011, pp. 93–98.

[50] P. Mohagheghi and V. Dehlen, “Where Is the Proof? – A Review
of Experiences from Applying MDE in Industry,” in Proc. of 4th
European Conference on Model Driven Architecture - Foundations and
Applications (ECMDA-FA). Springer Berlin Heidelberg, 2008.

[51] J. Whittle, J. Hutchinson, M. Rouncefield, H. Burden, and R. Heldal,
“Industrial adoption of model-driven engineering: Are the tools really
the problem?” in Proc. of ACM/IEEE 16th International Conference on
Model Driven Engineering Languages and Systems. Springer Berlin
Heidelberg, 2013.

	ieee_preprint
	cseet_CR

