
This paper is a preprint (IEEE ‘accepted’ status).

IEEE copyright notice: © 2017 IEEE. Personal use of this
material is permitted. Permission from IEEE must be obtained
for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or
promotional purposes, creating new collective works, for
resale or redistribution to servers or lists, or reuse of any
copyrighted component of this work in other works.

DOI. Not yet assigned

Requirements Engineering Challenges in
Large-Scale Agile System Development

Rashidah Kasauli, Grischa Liebel, Eric Knauss, Swathi Gopakumar, Benjamin Kanagwa
Chalmers | University of Gothenburg

Gothenburg, Sweden
{rashida,grischa}@chalmers.se, {eric.knauss}@cse.gu.se, bkanagwa@gmail.com

Abstract—Motivated by their success in software develop-
ment, companies implement agile methods and their practices
increasingly for software-intense, large products, such as cars,
telecommunication infrastructure, and embedded systems. Such
systems are usually subject to safety and regulative concerns as
well as different development cycles of hardware and software.
Consequently, requirements engineering involves upfront and
detailed analysis, which can be at odds with agile (software)
development. In this paper, we present results from a multiple
case study with two car manufacturers, a telecommunications
company, and a technology company that are on the journey to
introduce organization wide continuous integration and continu-
ous delivery to customers. Based on 20 qualitative interviews,
5 focus groups, and 2 cross-company workshops, we discuss
possible scopes of agile methods within system development,
the consequences this has on the role of requirements, and
the challenges that arise from the interplay of requirements
engineering and agile methods in large-scale system development.
These relate in particular to communicating and managing
knowledge about a) customer value and b) the system under
development. We conclude that better alignment of a holistic
requirements model with agile development practices promises
rich gains in development speed, flexibility, and overall quality
of software and systems.

Index Terms—requirements engineering, large-scale agile, sys-
tem engineering

I. INTRODUCTION

Despite wide critic, agile approaches have significantly
contributed to the way software is developed [23]. While
initially focused on small teams [23], [17], [1], [24], success
stories have led to their application at large scale [6], [20],
[29] and in system development [7], [2], [20], an environ-
ment that is characterized by long lead times [2] and stable,
sequential engineering practices [26]. In these environments,
new challenges arise, especially with respect to managing re-
quirements [30] and companies struggle to implement efficient
requirements engineering (RE) [19], [32], [5]. Existing works
on agile RE (e.g., [27], [13], [4]), mostly focus on proposing
new approaches, practices, and artifacts [12]. There is however
a lack of empirical studies that investigate the phenomenon of
RE in relation to agile methods in the domain of large-scale
system development [13], [12], [15].

In this paper we report RE related challenges of large-scale
agile system development i.e. the development of a product
consisting of software, hardware and potentially mechatronic
components that includes more than 6 development teams [6]
and is aligned with agile principles [23]. Through a multiple

case study of four large-scale system development cases, based
on 5 focus groups, 2 cross-company workshops and 20 semi-
structured interviews, we answer the following three research
questions from an RE perspective:

RQ1: What are possible scopes of applying agile methods in
large-scale system development? We aim to better understand
the general context of potential challenges in industry.

RQ2: How is the role of requirements characterized in
large-scale agile system development? With companies turn-
ing towards agile software development methods or even
scaling up agile practices such as continuous integration to
system level, the role of requirements is far from clear. Thus,
we examine different situations in which requirements are used
in agile software development.

RQ3: Which requirements related challenges exist in large-
scale agile system development? Building on RQ1 and RQ2
results, we then investigate challenges and implications to RE.

The contribution of this paper is a report of real-world
RE challenges related to applying agile development in large-
scale systems. These challenges are effectively hindering a
faster and more sustainable development of software. We
find challenges with respect to the setup of agility in large-
scale system development and with communicating knowledge
between different parts of organizations. In particular, there
is a challenge of distributing and breaking down knowledge
about customer value and about building and maintaining
system understanding. We are also highlighting the need for
systematic approaches to engineering requirements. Thus, we
hope that our work helps to establish RE practices that better
support agility within large-scale system development.

II. BACKGROUND AND RELATED WORK

Agile methods like Scrum and XP are being adopted in
large-scale system development companies [29], even though
they were originally intended for use on a small scale [17],
[1], [24]. Existing work on this topic shows that companies
successfully adopt agile methods, but that several challenges
remain. In a survey with 13 organizations in 8 European
countries and 35 individual projects on the adoption of XP
and Scrum, Salo and Abrahamsson [29] report successful
adoption of these methods and appreciation among practition-
ers. Lindvall et al. [22] study the potential of adopting agile
methods with ABB, DaimlerChrysler, Motorola, and Nokia.
The authors’ conclusion is that, overall, agile methods could

suit the needs of large organizations, in particular for small and
collocated teams. However, integrating agile into the company
environment could be challenging. Lagerberg et al. [20] report
based on a survey at Ericsson that applying agile on a large
scale facilitated knowledge sharing and effective coordination.
In a systematic literature review on the adoption of agile
methods at scale, Dikert et al. [6] identify 35 challenges, e.g.,
coordination in a multi-team environment with hierarchical
management and organizational boundaries. In a position
paper by Eklund et al. [7], research challenges of scaling agile
in embedded organizations are presented. These challenges
include, e.g., coordination of work between agile teams or
taking into account existing ways of working for systems
engineering. Similarly, Berger and Eklund [2] present, based
on a survey with 46 participants, expected benefits and chal-
lenges of scaling agile in mechatronic organizations, including
efficiently structuring the organization, understanding of agile
along the value chain, and adaptation to frequent releases.

With respect to agile RE or RE in combination with the
use of agile methods, there is less existing work. Based
on a mapping study with 28 analyzed articles, Heikkilä et
al. [12] conclude that the definition of agile RE is weak.
Furthermore, they report several problematic areas such as the
use of customer representatives, prioritization of requirements
or growing technical debt. In a case study by the same authors
at Ericsson, the flow of requirements in large-scale agile is
studied [13]. Perceived benefits include increased flexibility,
increased planning efficiency, and improved communication
effectiveness. However, the authors also report problems such
as overcommitment, organizing system-level work, and grow-
ing technical debt. Similarly, Bjarnason et al. [4] investigate
the use of agile RE in a case study with nine practitioners
at one large-scale company transitioning to agile. The au-
thors report that agile methods can address some classical
RE challenges, such as communication gaps, but cause new
challenges, such as ensuring sufficient competence in cross-
functional teams. In a case study with 16 US-based companies,
Ramesh et al. [27] identify risks with the use of agile RE.
These are, e.g., the neglection of non-functional requirements
or customer inability. A systematic literature review on agile
RE practices and challenges reports eight challenges posed
by the use of agile RE [15], such as customer availability or
minimal documentation. However, the authors also report 17
challenges from traditional RE that are overcome by the use
of agile RE. The authors conclude that there is more empirical
research needed on the topic of agile RE. Other studies have
addressed the use of traditional RE practices and agile RE.
Paetsch [25] provide a comparison between traditional RE
approaches and agile software development while identifying
possible ways in which agile software development can benefit
from RE methods. The authors conclude that agile methods
and RE are pursuing similar goals in key areas like stakeholder
involvement. The major difference is the emphasis on the
amount of documentation needed in an effective project.
Meyer, in contrast, regards the relationship between RE and
agile more critical, describing the discouragement of upfront

Case Data	Collection Discussion and	
Validation	of	
results

Metalevel

Telecom

Automotive 1

Automotive	2

Technology

Comment
- Scope	study
- Identify	RQs

- Individual	scoping	and	sampling	for	each	case
- Selection	of	appropriate	data	collection	method	for	each	case

- Presentation	of	
prel.	Results

XComp 1	
Scoping	WS

FG-1	+	
Scoping	WS Int-1	… Int-7

Scoping	WS Int-1 FG-2

Scoping	WS

FG-3

Int-1	… Int-11

XComp 2	
Validation	WS

FG-4

FG-5Int-1

Mult.	Case	
Study	Design

Fig. 1. Overview of multiple case study research design

analysis and the focus on scenario based artifacts (i.e. user
stories) as harmful [23], however not based on empirical data.

In summary, there is substantial existing work on the
adoption of large-scale agile in system development, including
empirical studies. However, existing work either focuses on
identifying and evaluating agile RE practices [12], [15], or at
presenting the current state of practice at single companies
[13] and without explicitly targeting system development [4].
Hence, additional empirical work is needed to understand the
complex phenomenon of agile methods and RE in the domain
of large-scale system development. Our study contributes with
a cross-case analysis of large-scale agile development and the
role and scope of RE in this context. Specifically, we aim
to compare how agile methods are adopted with different
scopes in multiple companies (RQ1). Additionally, we aim to
characterize the role of requirements (RQ2) and requirements-
related challenges (RQ3) within this scope.

III. RESEARCH METHODOLOGY

In our multiple case study [28], we investigate one telecom-
munications company, two automotive companies, and one
company developing software-intensive embedded systems
(referred to as the Technology Company in this paper). All
four cases represent large companies developing products
and systems that include a significant amount of software,
hardware, and (with exception of the Telecom Company) also
mechanical components. All case companies have experience
with agile software teams and have the goal to further speed
up the development of their software intense systems.

Sampling and Data Collection: Figure 1 gives an
overview of our research design. Starting from a common case
study design and common research questions, we conducted
a cross-company scoping workshop (XComp 1 Scoping WS)
to secure commitment from participating companies, align
the goals of the study and finalize the research design.
We then scheduled individual scoping workshops (Scoping
WS) with each company, except for Technology Company,
which, despite genuine interest in the study, could not free

TABLE I
DATA SOURCES

Type Company Role(s) Label

Focus
Group

Telecom 2xTest Architect, System
Manager

FG-1

Focus
Group

Automotive 1 Process Manager, Specialist
Platform Software

FG-2

Focus
Group

Telecom 2xTest Architect, System
Manager

FG-3

Focus
Group

Automotive 2 System Responsible, 2x
Function Owner, System
Quality Engineer

FG-4

Focus
Group

Technology RE Change Agent, Chief
Engineer

FG-5

WS Automotive 1 Verification Manager,
Specialist Platform Software

XComp 1

Telecom Test Architect, System
Manager

WS Automotive 1 Verification Manager,
Specialist Platform Software

XComp 2

Telecom Test Architect, System
Manager

Automotive 2 Test Architect, System
Manager

Technology Chief Engineer Software

Int Telecom Test Architect T-TA-1
Int Telecom System Manager T-SysM-1
Int Telecom System Manager T-SysM-2
Int Telecom Developer T-Dev-1
Int Telecom Scrum Master T-ScrM-1
Int Telecom Area Product Owner T-APO-1
Int Telecom Operational Product Owner T-OPO-1

Int Automotive 1 Technology Specialist (Safety) A1-TS-1

Int Automotive 2 Component Design Engineer A2-CDE-1
Int Automotive 2 System Design Engineer A2-SDE-1
Int Automotive 2 Function Owner A2-FO-1
Int Automotive 2 Function Owner A2-FO-2
Int Automotive 2 Software Developer A2-SD-1
Int Automotive 2 Software Developer A2-SD-2
Int Automotive 2 Product Owner A2-PO-1
Int Automotive 2 Scrum Master A2-SM-1
Int Automotive 2 System Tester A2-ST-1
Int Automotive 2 Functional Tester A2-FT-1
Int Automotive 2 Software Quality Expert A2-SQE-1

Int Technology Requirements responsible Tec-SRR-1

up resources for this study at that time. During these scoping
workshops, we selected with help of our company contacts
the most appropriate case in terms of availability and available
experience on the topic, e.g., a specific product or component
(partially) developed with the use of agile methods. These
cases were selected to accommodate two aspects: variation to
allow better generalization of results and convenience, since
there was an interest to investigate the research questions
in each particular case. This allowed us to cover a variety
of perspectives during data collection, i.e., system overview,
customer experience, development, integration, and testing.
Our generic data collection instrument can be found online1.
Data collection was adjusted according to each individual case
based on resource availability and commitment. For instance,

1http://grischaliebel.de/data/research/KGLKK re agile.pdf

the Telecom case relates to a large product development by
many Scrum teams and we relied on a focus group followed
by interviews2 (denoted Int in the figure) with a variety of
roles (see Table I). In contrast, the Automotive 1 Case relates
to one Scrum team and we choose a focus group with the
entire team, complemented with an interview of a safety
expert. Interviews lasted approximately one hour and followed
a similar interview instrument for all companies with domain
specific adjustments for each company. For focus groups and
cross-company workshops we scheduled three hours.

Not all researchers participated in all interviews and focus
groups, but for each case we had one dedicated researcher who
was present in all data collection events of that particular case.
We recorded interviews and focus groups where possible and
had at least two researchers take notes otherwise.

Data Analysis: For data analysis, we relied on a thematic
coding approach [10]. For each case, at least two researchers
familiarized themselves with the data and highlighted notewor-
thy statements and assigned a label or code to each. Based
on a card sorting approach, we then in the entire group
of researchers discussed and iteratively combined codes into
30 candidate themes, from which we derived four high-level
clusters containing 3-5 themes each. To validate the clusters,
we discussed the outcome of our analysis in a reporting
workshop with all participating companies.

Threats to Validity: By design, the external validity of
case studies is low. Hence, generalization of our findings might
not be possible to different companies or domains. In particu-
lar, we cannot reason about challenges for small-scale or pure
software development. We believe that while some challenges
might be visible there as well, they can likely be managed
ad hoc or within the scope of agile practices. We designed
our study to identify common challenges across participating
companies. Thus, our research method does not support any
deep argument about differences between companies, domains,
and market positions. However, given that we found similar
themes in all four cases, we expect that these apply similarly to
other companies or projects in large-scale systems engineering.

To increase internal validity, we used data triangulation
between interviews and between case companies. Further, the
results of our analysis were discussed in a cross-company
workshop (XComp Validation WS) with the companies. The
workshop included key roles from each company that were
already involved in the study. We also used the workshop to
discuss underlying root causes and challenges that are shared
by all companies (see Section V). To avoid a too restricted
view on smaller parts of a project or a product, we selected
interviewees from different parts of the development, including
at least one team and several system level roles in each case.
We relied on a convenience sample and companies provided
us with access to dedicated experts in the research field (agile
transformation, RE) with a genuine but diverse interest in the
field. While we hope that this improved internal validity, it
might have introduced a selection bias, which we tried to

2We refer to participants of interviews and focus groups as interviewees

http://grischaliebel.de/data/research/KGLKK_re_agile.pdf

Communication	 and	Knowledge	Management

Agile	Scope	in	Large-Scale	Development

a) Agile	Islands	in	a	Waterfall
b) Component	vs.	Systems	Thinking
c) Safety	Critical	and	Agile
d) Impact	on	Infrastructure
e) Time	for	invention	and	planning

Role	of	RE	in	Large-Scale	Agile	Development

a) Requirements:	Order,	Goal,	or	Dialogue?
b) Embrace	Change	of	Requirements?
c) Requirements	as	Technical	

Documentation?

Shared	Understanding	of	Value

a) Customer	Value	to	Team
b) How	to	Write	Meaningful	 User	Stories
c) Feedback	and	Requirements	Clarification

Build	and	Maintain	System	Understanding

a) Inform	and	Synchronize	between	Teams
b) Creating	and	Maintaining	Traces
c) Gap	between	Plan-Driven	and	Agile	
d) Tests	and	User	Stories	not	sufficient
e) Establishing	an	Agile	Tool	Chain

RQ1

RQ2

RQ3

RQ3

Context: Scope of Agile and Role of RE Challenges: RE for Agile System Development

Fig. 2. Themes with respect to research questions.

VRequirements
engineering
- Define tests
- Inform dev.
- Document for

maintenance
Scope of agile
development

Fig. 3. Different scopes of agile development within system development.
(Light grey box denotes RE, arrows indicate how requirements are used for
informing developers about what to implement, testers about what to test,
and for documenting the system for maintenance. Three black boxes show
the different agile scopes discussed in this case study.)

mitigate by encouraging participation of both proponents and
opponents of agile/RE.

We limited threats to conclusion validity by improving the
interview instruments in multiple iterations and by conducting
interviews in pairs of two researchers. With all four case
companies, we have a prolonged involvement and therefore
a mutual trust among the parties exists. The data analysis was
discussed and refined among the authors in several iterations.

IV. FINDINGS

This section presents our findings in relation to our research
questions. Fig. 2 presents an overview of our themes.

A. What are possible scopes of applying agile methods in
large-scale system development? (RQ 1)

1) Context of Case Companies: Figure 3 gives an overview
of different scopes we identified in our cases. The next Section
IV-A2 elaborates on common themes across these scopes.

a) Telecom Company: The Telecom Case relates to the
development of one major product. More than 30 Scrum teams
develop in parallel based on a scaled agile approach (adopted
from SAFe [21]). Scrum sprints are based on a backlog and
a hierarchy of product owners breaks down product require-
ments and customer visible features to backlog items. While
these product owners represent the customer requirements
towards the product development, system managers represent
a system requirements perspective. The overall effect is a
continuous development stream and feature flow, which is
supported by a powerful infrastructure that enables continuous

integration and testing. Pre-development generates knowledge
about new features, which enables effective planning for
continuous delivery.

Particular to the Telecom case, hardware development is
largely decoupled from the software development. New hard-
ware becomes available with a regular, but low frequency.
Thus, the software development sets the pace of system
development, which can be seen as continuous and agile, in
that it embraces agile values as much as possible. In Figure
3 this is shown by the largest, dotted box, which implies that
the whole scope of a traditional V model is covered.

b) Automotive Company 1: In Automotive 1, agile meth-
ods have been successfully applied to in-house development of
software components. In the light of growing competition from
software-centric companies, e.g., on autonomous driving, there
is a desire to scale up these fast-paced approaches from devel-
oping software components to developing complete functions,
thus including agile development of hardware and mecha-
tronic. The selected case is a pilot project that re-implements
a whole customer function in an agile way. Integration of
this function into a real vehicle requires additional verification
with respect to safety and overall system behavior. Thus, we
would characterize this situation with the second largest box
in Figure 3, where a function owner takes responsibility for
one particular function and implements it with an agile team.

c) Automotive Company 2: With Automotive 2, we se-
lected a case responsible for safety critical functionality de-
veloped in house. As with Automotive 1, agile teams develop
software. For this, software requirements are transformed
into backlog items. In order to speed up development of
this differentiating functionality, different measures have been
taken to speed up the overall system development. While this
development still corresponds to the V model, the introduction
of a shared information model that supports storing require-
ments, design elements, tests, and implementation models
helps to shorten the development time significantly. In FG-
4, participants referred to this approach as narrow V model
(comparable to agile loop in [7]). In Figure 3, we describe
this as the smallest box, not to refer to overall development
speed, but to the fact that hand-over between plan-driven and
agile development happens on a low level of abstraction.

d) Technology Company: The Technology Company de-
velops mechanical products, both for consumer markets and
for industrial development and manufacturing. Their system
development includes several system elements. Software de-
velopment is mostly confined to two of these elements, both of
which are characterized by agile methods and practices such
as Scrum and Continuous Integration. As with Automotive 2,
we refer to this situation with the smallest box in Figure 3.

2) Agile Scope in Large-Scale System Development: Sum-
marizing the four cases, we recognize that some case com-
panies have come a long way towards continuous software
engineering and enterprise-wide adoption of agile [31]. Others
are currently moving in that direction. Our research aims for
common themes, regardless of the scope of agile adoption
(for which we control with RQ1) or agile maturity (which we

did not explicitly investigate in this study). In the analysis of
interview data, we uncovered the following themes that relate
to the scope of agile methods.

a) Agile Islands in a Waterfall: From a product per-
spective, a plan-driven or stage-gate approach is important.
Release of a new product needs to be planned and longer
development cycles for hardware and mechanical components
need to be scheduled. All of our case companies have agile
software development teams that operate within the context
of a larger system engineering process, which one interviewee
described as agile islands:

“It feels like agile islands in a waterfall.” — FG 2

The challenge we found here regardless of agile scope in
the specific case is continuous information exchange between
plan-driven and agile parts of an organization. Incubation of
new innovative ideas, facilitating quick feedback loops, and
quick learning on potential business value are important assets
to remain competitive, yet they are hard to integrate into the
overall system development approach in all our cases.

b) Component vs. Systems Thinking: The scope of agile
development also relates to the relationship between compo-
nents and the system that is build based on it.

“We need to balance project autonomy, freedom, empowerment
with platform reuse, consolidation of data, and unambiguous
requirements. The teams have a lot of tacit knowledge, which is
not available beyond their scope. But how much ceremony should
we force on teams?” — FG 3

Even beyond designing a single system, knowledge about
customers and their needs should be maintained for future
projects. Without a good knowledge management approach,
this can collide with the desire to allow empowered component
teams to make fast, local decisions.

c) Safety Critical and Agile: Most of our case companies
are subject to safety standards and regulations. Several partic-
ipants in FG2 and FG4 expressed concerns that the develop-
ment of safety critical software together with corresponding
standards could impede agile development. As examples, the
participants expressed the need for documentation and tracing
that is required by several standards, such as ISO26262 [16].
However, an expert for functional safety in Automotive 1
stated that the need for documentation and tracing is related
more to the size of the company and the system rather than
regulations.

“Many see that as a problem. Many say that it’s safety problem, it
is a 26262 problem. But we say [..] we need to document anyway
since then half a year later it is a different team [working on the
same software]” — A1-TS-1

According to our interviewees, standard conformance could be
combined with agile development if only this was planned in
a systematic fashion, e.g., by sandboxing safety critical parts.

Still, the need to guarantee safety relates to both component
and system level. Depending on the scope of agile methods,
this introduces interfaces between plan-driven parts of the
organization and agile teams.

d) Impact of new features on infrastructure: In system
development, integration testing often depends on a strong
laboratory setup that allows testing hardware, software, and

potentially mechanics together. While a new feature might
mainly depend on changes of software and can be provided
in an incremental, fast-paced way, it could require an update
of the test environment, which may include sophisticated
hardware and environment models. However, changing the
test environment might take as long as finishing the software
components, thus introducing delays, if not started in due time.
Similar concerns relate to other infrastructure for continuous
integration, delivery, and deployment.

This theme shows that independent of the scope in Figure
3, there is a need to maintain a system-level perspective
beyond self-organized teams and to allow requirements related
information to escalate to this level as early as possible.

e) Time for invention and planning: Study participants in
Automotive 1 reported that an exploration of solution space
is difficult within agile sprints, as it would be impossible to
commit to a fixed schedule without deep knowledge about new
features. Pre-development is required to better understand the
impact of new features. If this is done by a dedicated group,
this would imply documentation and hand-over of results and
slow down the process. As a remedy, specific exploration
sprints were brought up. Another solution could be to transfer
engineers between pre-development and agile system develop-
ment, so that they can also share their knowledge with team
members. Either way, this highlights the need for good scoping
of agility within system development.

To answer RQ1, the four cases show that agile develop-
ment is indeed applied on very different organizational levels.
Irrespective of this scope, common issues with RE occur.
Handovers between the boundary of agile and plan-driven
parts of the company even occur in the Telecom case.

B. How is the role of requirements characterized in large-
scale agile system development? (RQ 2)

a) Requirements: Order, Goal, or Dialogue?: In all our
cases, software development teams are enthusiastic about agile
methods. As a consequence however, many see requirements
as something that comes into the way of being agile. A require-
ment is seen as an order, interfering with the empowerment of
teams. Instead, developers tend to prefer user stories, that set
goals, but do not limit the agile team’s autonomy in deciding
how to reach them, i.e., to claim ownership.

According to our interviewees, agile methods imply a bidi-
rectional flow of information, since they advocate to explore
the best way of satisfying a customer need through incremental
and iterative work. Agile teams are used to uncover new
aspects, details, or even new requirements. With respect to RE,
the main advantages brought up by interviewees on all levels
are related to ownership and include consequent orientation
towards user and customer value as well as the fact that
developers have the mandate and competence to update user
stories within the scope of agile development. Thus, user
stories and implementation are usually extremely consistent.
This fast paced agile learning however needs to be fed back
to system-level requirements models, a task that is currently
challenging in all our cases.

b) Embrace Change of Requirements?: Sufficient facili-
ties for updating system requirements based on agile learning
are currently missing. Thus, such updates are manual work,
leading to inconsistencies, which are expensive to remove and
can be considered waste in the overall development process. In
addition, developers have little intrinsic motivation to update
requirements models based on updates to user stories, as
they are not part of their delivery (usually code and tests).
If however requirements updates were not propagated, the
system requirements view would become quickly obsolete and
detached from the real system. Consequently, roles responsible
for customer and high-level system requirements (product
owners, function owners, system managers), fear a loss of
important knowledge for later maintenance of the systems.
A more systematic approach to manage requirements updates
received from agile teams would make their jobs much easier.

Another key challenge highlighted by our interviewees
relates to the timeliness of required information. Agile devel-
opment is for example able to digest changes and information
that only incrementally becomes available, but it struggles with
information provided in bulk.

c) Requirements as Technical Documentation?: With re-
spect to a wider adoption of agile methods and their rejection
of requirements, we recognized across all companies a ten-
dency to encounter more inconsistencies between requirements
and implementation. This is partly due to the aforementioned
lack of propagating changes of user stories to the system
requirements model. While this relates to classic requirements
challenges, the effect of introducing agile methods has shifted
the problem somewhat: agility helps investigating assumptions
as well as resolving ambiguities and inconsistencies early.
Knowledge gained in this way has high value as a reference for
maintaining the system, i.e., as technical documentation. But
as long as this knowledge is not efficiently shared in the whole
development organization, the challenge remains effective.

For technical documentation, some developers would prefer
to use automated regression tests, since this would put less
overhead on their work. Most of our interviewees however,
especially on higher levels of abstraction in system develop-
ment, indicated that higher-level requirements are of critical
importance here, since reconstructing the intended behaviour
of a component from a set of a dozen test cases and hundreds
of user stories renders them useless for technical documenta-
tion. We refer to the challenge of tests and user stories being
insufficient for specification in the next section.

C. Which requirements related challenges exist in large-scale
agile system development? (RQ 3)

With respect to RQ3, we see two communication related
areas of challenges: Shared Understanding of Value and Build
and Maintain System Understanding (see Fig. 2).

1) Shared Understanding of Value:
a) Customer value to team: Agile development has been

adopted for all our case companies as presented in Section
IV-A1. Study participants indicate a large distance between
customers and developers:

“We have so many different levels between the real customer, the
customer units and [the teams], with each transaction you lose
so much content” — T-TA-1

In all our cases we found dedicated roles that channel in-
formation from multiple stakeholders down to the teams. It
is not trivial to bridge that gap, direct interaction of teams
and stakeholders can lead to chaos when established plans
are circumvented, on-site customers are not an option, and
product-owners hard to implement.

However, one participant exclaimed that the focus on agile
practices occupied the teams so much that this caused a neglect
of product value.

“The idea of producing value for the customer has been dis-
carded. Teams just want to be agile (i.e., independent)” —
XComp 1

However, value creation is not solely the teams’ responsibility
as the requirements breakdown starts from the customer units,
in the Telecom case, or from the function management units,
in the Automotive cases.

To ensure frequent delivery, application of agile methods
implies breaking down large features into smaller sub-features
and tasks that can be finished during a typical Sprint. This is
the practice in all our case companies even though the used
methods differ.

“[..] usually, a feature is what you can sell to customers but teams
talk of sub-features [..] ” — T-ScrM-1

One interviewee (T-APO-1) pointed out that it is hard to break
down the requirements such that they carry user value, a
challenge also recognized in other cases (FG-2 and FG-5).

b) How to write meaningful user stories: User stories
provide a fast means to share knowledge both on a high and
a low level in an agile system development. In the Telecom
as well as in the two Automotive cases, user stories are used
for two purposes as one interviewee says

“... so there are user stories that of course take the view from
the end customer and describe what the end customer wants from
our system and why. But then there are other user stories that
are more like work descriptions of what the team should achieve
and those could be like internal things that need to be developed
in order to keep the architecture constrained.” — T-SysM-2

A Function Owner in FG-4 (Automotive 2) specifically ex-
pressed that high-level user stories could help to communicate
value early. However, as discussed in Theme a) customer value
to team, it is particularly difficult to write user stories that have
direct value for the user. Such user stories would typically be
too large to be completed and demonstrated in one sprint. Yet,
breaking it into more user stories could deteriorate require-
ments quality since not enough effort goes into maintaining
the requirements. It is therefore hard to understand which user
story can be traced to requirements. In summary, user stories
are hard to write at the scale and complexity of the cases in our
study, yet they offer a unique opportunity to bridge distances
between customer and developer.

c) Feedback and requirements clarification: In several
companies, study participants raised the issue of long or
complicated feedback cycles. At Automotive 1, one study par-
ticipant named slow mechanical or hardware development as
one of the main reasons for long feedback cycles. If software

has to be tested together with actual hardware, feedback on
software functionality is postponed until the hardware is ready.

One study participant stated a second reason — often
customers are not agile and take a long time to try out and
approve new features. By the time feedback then reaches
the agile teams, they are already working on another part of
the product and do not remember exactly what the feedback
is about. That is, for the teams the feedback comes too
late, while customers do not see value in giving quick and
frequent feedback, even on smaller increments. This challenge
is especially encountered if the system under development is
supposed to be integrated into a larger system at the customer
site, as for example in the Telecom and Technology cases.

A third reason for complicated feedback cycles is that
there is a large number of stakeholders, both external and
internal. Due to the complex nature and the scale of the
products developed by our case companies, there is rarely
a single customer. Instead, requirements inflow occurs from
many different sources, e.g., customers, authorities, managing
subcontractors and sourcing, or standardization organizations.
In many cases, requirements need to be discussed with and
communicated to other stakeholders within or outside the
organization, delaying feedback.

Even if feedback and requirements clarification can be
facilitated despite the challenges raised here, gained knowl-
edge must be effectively managed as participants in FG-5
(Technology Case) pointed out. Two aspects of this challenge
were raised: First, it is unclear where knowledge about a
specific customer can be managed beyond the team and current
project. Secondly, in continuous product development, teams
might not realize that they have valuable knowledge for other
parts of the system development, while those other parts do
not know that valuable knowledge is available.

2) Build and Maintain System Understanding:
a) Inform and Synchronize Between Teams: Teams re-

ceive requirements from the product managers through several
organizational levels in the Telecom case. Furthermore, they
often need to exchange information with other teams to
synchronize the development. This process of channeling the
‘right’ information towards and between teams is difficult and
time-consuming. Hence, it limits agility and speed of teams.

A similar issue was raised at Automotive 1, where par-
ticipants discussed which organizational scope agile methods
should have with respect to time for planning and invention
(Section IV-A2e). FG-2 participants wondered whether agile
should be limited to the development only, or should start
from a feature request. In the former case, developers would
receive feature requests in the form of already broken down
requirements for implementation. In the latter case, developers
would have to do the breakdown of a feature request into
smaller units themselves. While both cases seem to be feasible,
the question is how teams can be synchronized in any of these
cases. If requirements are broken down by an external role or
team, possibly in a plan-driven way, they need to be handed to
different agile teams and their work needs to be synchronized.
If they are broken down and implemented within one team,

multiple agile teams only need to synchronize when there is
interaction with or dependencies to features developed by other
teams. Awareness about such dependencies is a pre-requisite.

b) Creating and Maintaining Traces: Several intervie-
wees in the Telecom case stated that their system requirements
work as a documentation of what the system is doing, rather
than a plan of what shall be implemented. In their view, system
requirements are used as an input for specifying test cases
and to allow analysis for new features, not as a plan for
implementation.

“You can’t really afford to have this kind of static requirements
work upfront which will be a waste anyway when you implement
stuff. The way we handle requirements now is more like a system
description.” — T-TA-1

Since user stories relate directly to feature implementation and
are not always systematically derived from existing require-
ments, direct tracing is not always possible.

A similar situation occurs in Automotive 2, where product
owners write user stories based on plan-driven requirements
they receive as an input. These user stories can in fact be
rather local development tasks and backlog items that do not
require tracing to system requirements. Thus, traces are not
systematically managed, which can lead to additional work in
cases where such backlog items become relevant for tracing
to system requirements. The fact that often only the product
owner is aware of which user stories originate from which
requirements can slow down collaboration between agile teams
and plan-driven RE teams. Interviewees in the agile teams
considered tracing user stories to requirements to be documen-
tation, which should not be part of the agile process. Instead
they preferred to spend their time on implementation:

“I don’t think traceability is not required or something like that.
It’s just that my focus hasn’t been on documenting the function. I
just focus on doing implementation and developing the function.”
— A2-PO-1

This view was also shared in Automotive 1: While participants
stated that tracing is valuable, or even required by standards,
they felt that right now there is not enough incentive for
agile developers to create traces. They wished for an incentive
or directly visible benefit for the developers as well as for
simplifying trace creation.

c) Bridging the Gap Between Plan-Driven and Agile
Development: In the Telecom case, we found that system man-
agers feel disconnected from the agile teams. Their role is to be
experts on a certain part of the system and support teams with
their knowledge of the system requirements. However, as one
interviewee stated they currently cannot be in contact with all
teams and might therefore not get a notification if something
has been changed with respect to existing requirements.

“If [..] a team updates a past requirement, perhaps I should get
like a notification on that so I can ask them ’Have you forgotten
X?’.” — T-SysM-1

Similar challenges exist with the other companies, e.g. in the
Automotive 2 case where agile teams can add new backlog
items or change existing ones in collaboration with the product
owner. However, since agile teams do not interact directly
with system requirements (see b) creating and maintaining
traces), they do not consider knowledge about them to be

of importance. Further, backlog items are easy to understand,
even for stakeholders not directly involved, and allow them to
share their opinion. While this is generally perceived positively
by the interviewees, it was also brought up that this can cause
the function owner to be overexposed to change requests. One
function owner expressed this as follows.

“The more people look into requirements, the more they read
them, the more iterations it will become. [..] there is going to be
more opinions, comments and also more work.” — A2-FO-1

As this can lead to inconsistencies between changed and
new backlog items and the system requirements, e.g. in the
case where a system requirement related to a new user story
already existed, increased gatekeeping becomes necessary.
This generates effort for backlog grooming by the (agile)
product owner, and managing of system requirements by the
(plan-driven) function owner. The current separation between
both worlds does not seem to be ideal, since product and
function owner can easily become bottlenecks, and late res-
olution of inconsistencies can create additional effort. If the
actual implementation deviates from the original requirement
or when some requirements are not implemented, this will
surface as problems during system integration and testing.Tests
are developed against the plan-driven requirements and are
therefore in need of an up-to-date version.

“If I have a requirement saying this thing should happen, when
I test it, I find out that what is supposed to happen doesn’t
happen. [..] And then I find out the requirement wasn’t updated.
So actually the implementation was correct but the requirement
isn’t matching the implementation.” — A2-ST-1

Further, if the system has to be evolved or maintained in the
future, outdated requirements can cause misunderstandings.

d) Tests and User Stories not sufficient: The idea of using
test cases both as actual test artifacts and as requirements
documentation is wide-spread in the agile community [23]
and was also discussed by several participants. While this was
seen as a potential way to reduce documentation effort, several
issues with this approach were brought up. According to sev-
eral study participants, user stories and test cases do not carry
enough information to serve as a means of documentation:

“Tests are written in a pragmatic way. They do not capture the
’why’.” — Tec-SRR-1

Other interviewees throughout the companies added that one
would need a number of tests to document any significant
requirement, which will then be hard to reconstruct from just
reading the tests during maintenance.

Several interviewees saw similar problems with user stories,
as they would only reflect single scenarios. The overall system
behavior would then emerge from the syntheses of all these
single scenarios. To derive this full picture from tests or user
stories only would, however, be too difficult:

“If we don’t specify this kind of complete [requirements] specifi-
cation, we could try to use all [..] user stories [..]. But then we
must base the understanding on [..] lets say [..] 2000 user stories
[..] and try to find a good way of describing the complete system.”
— T-SysM-2

It is interesting to note that this challenge surfaces early
on, i.e., when an incoming customer request is analyzed.
Therefore, if agile teams only develop backlog items based

on finished requirements that they receive from other parts of
the organization, they might not be aware of this challenge
and therefore consider test cases to be sufficient.

While in the Telecom case the issue of understanding system
behavior from user stories or tests was mainly discussed with
respect to new features, participants in Automotive 1 raised it
especially for system maintenance. FG-2 participants agreed
that user stories or test cases would not be appropriate to
understand the behavior. They were unsure what form of
documentation should be used instead, which level of detail
the requirements should be on, and how they could be different
from ’traditional’ requirements.

e) Establishing an agile tool chain: Several participants
in FG-2 (in Automotive 1) raised the topic of an adequate
tool chain for agile RE. They reported that, at the moment,
they use traditional tools for requirements management and
tools that are aimed at agile development, such as JIRA,
for the actual development. These tools are however largely
separated and, thus, they felt that in order to be able to
perform RE in a more agile way, they would need appropriate
tools. This is an interesting issue, as a simple issue tracking
tool is not likely to address their needs as they operate in a
multi-disciplinary, regulated environment. In particular, there
are formal requirements for traceability imposed by safety
standards such as ISO26262.

Similarly, in the Telecom Case, current tooling was brought
up as a hindrance for speed and agility. Interviewees described
the current process of updating system requirements as too
slow and cumbersome. They stated that by introducing a more
efficient tool solution, engineers could potentially be more
motivated to make changes to requirements and by this narrow
the gap between agile user stories and requirements.

The need of a tool-chain that better supports agile informa-
tion flows was confirmed by the other two cases as well.

V. DISCUSSION AND IMPLICATIONS

Even though the four cases differ in their context, i.e.,
domain and scope of agile methods within system develop-
ment, we found common concerns and challenges with respect
to RE. Based on our findings, we draw the following four
conclusions:

Conclusion 1: Challenges of RE for large-scale agile
system development relate to communication and knowledge
management. While related work implies that communica-
tion challenges are mitigated by agile approaches and less
prominent in agile RE [15], [4], all our challenges relate to
communication and knowledge management. Both aspects are
at the core of Agile and RE, indicating a need for fundamental
research in these areas specifically for system development.

Conclusion 2: Challenges relate to two areas of require-
ments knowledge: User Value and System Understanding. We
identified two categories of RE challenges in the large-scale
agile system development domain; shared understanding of
value and building and maintaining system understanding.
While pre-agile RE approaches differ between user and system
requirements specifications, we are not aware of related work

that makes this distinction for RE in the scope of agile
development. Surprisingly, we found that companies were not
very interested in agile RE practices themselves (which is the
focus of the majority of related work, as [15] indicates). In
contrast, they found it more important to understand how RE
can support agile methods in large-scale system development
and how agile development can be integrated with existing
processes. Our findings suggest that such support cannot be
offered sufficiently by traditional, upfront RE, as indicated
[23], [13]. Similarly, we did not find any specific roles that
emerge in the large-scale agile environment, comparable to
the roles presented in [14]. Our results suggest that continuous
and agile development methods on a large scale require new
concepts.

Conclusion 3: Challenges relate to the interplay of stake-
holders from three domains: customer, development, and in-
tegration & testing. The development domain is generally
embracing agility and characterized by a dislike for traditional
requirements and bulk updates. The require better synchro-
nization between teams and wish for establishing an agile
tool-chain. In contrast, the customer domain is concerned with
breaking down customer-visible features in order to commu-
nicate customer-value to team. They require better support
for writing meaningful user stories and for bridging the gap
between plan-driven and agile development. The integration
and testing domain is struggling to create and maintain traces
and with the fact that user stories and tests are not sufficient
to build and maintain sufficient system understanding.

Conclusion 4: In order to yield their full benefits, agile
practices and a holistic system requirements model must
be better aligned. Key challenges occur when there is an
interaction, or a lack thereof, between the three domains and
we believe that industry would benefit from new impulses from
research in the following areas.

Bridge distance between customer and developer: We
found in all four case companies that the distance between the
customers and the development is perceived to be too large. In
particular, it was described as difficult to break down a feature
request into small packages that both have customer value and
can be delivered in small iterations. However, agile values such
as individuals and interactions [8] as well as agile practices
such as continuous delivery [18] depend on a good notion
of value. Yet, we found this particularly hard to establish in
large-scale system development, because of unclear customer
role and scale. In case of an external customer, any customer
visible feature will imply more work than can be done within
one sprint or by one team. This makes feature decomposition
necessary and it is impossible for a single team to demonstrate
customer value at the end of a typical sprint. Related work
in this direction has in particular pointed out challenges with
the practice of customer representatives [12], [27], [15], but it
seems that the notion of value itself might be problematic.

Establish information flow and knowledge management:
Similarly, the information flow between the domains currently
does not well support agility, in the sense that information
exchange and feedback cycles are often too slow. As our

results suggest, it is crucial to establish suitable exchange
and management of knowledge throughout large-scale agile
system development. Agile development works best with a
continuous inflow of new requirements and can in turn help
to resolve ambiguities and refine requirements just in time, as
new knowledge becomes available. However, it is important to
support updating system requirements models and to coordi-
nate the information flow between parallel teams. This finding
suggests that communication issues continue to be relevant in
large-scale agile RE, in contrast to what is suggested by related
studies, e.g., [15], [4].

Support analysis of incoming requirements: In all case
companies, the need for documented requirements was stated
because of a need to understand the current system in order
to analyse new feature requests or to maintain the system.
Also, several interviewees stated explicitly that using test cases
as requirements would not be enough to fulfill this need.
Therefore, we see the need for more work investigating the
use of different notations, techniques or methods to inform
early analysis of incoming requirements. While the user story
format has been described as insufficient [12], test cases are
often named as an alternative [12], [3]. Our findings suggest
that using test cases, even in combination with user stories
might not be sufficient, in particular with respect to supporting
the understanding of a system’s current functionality.

Dealing with system qualities and regulations: As our
results suggest, companies are facing challenges when trying
to address quality requirements, such as safety and security.
Such quality requirements often relate to regulations that
can directly challenge agile practices, by requesting end-to-
end documentation and tracing of safety-related requirements.
While these regulations might be one argument to have re-
quirements documented, interviewees in all companies felt
a strong need for documentation even without regulations.
Especially the need to understand the current system in order
to react to new feature requests or system maintenance were
raised in all companies. Traditionally, long upfront analysis
and planning aimed to address these needs [23]. However, as
companies try to speed up their development, research needs
to investigate new ways of dealing with documentation of
such cross-cutting issues. Ensuring qualities and addressing
non-functional requirements has been brought forward as a
challenge in agile RE [15], [12], and first works exist to
address regulations in agile [9].

In summary, companies need to aim for an open dialogue
to balance system development needs with allowing agility.
To address requirements updates and regulative issues, one
could include explicit updates to requirements as part of each
sprint, e.g. to accommodate safety regulations [11], [9]. To
address the lack of intrinsic motivation to update requirements
or establish tracing, immediate feedback loops should be
established that show value to developers [33]. In addition,
gamification approaches resonated well in discussions with
practitioners. To address the distance to customer and the
challenge of none-agile information flow to development, one
could investigate how to best use user stories on a high level

of abstraction and early on as well as to facilitate a dialogue
between roles in different domains [8].

VI. CONCLUSION AND OUTLOOK

We presented our results from a multiple-case study with
four systems engineering companies on the interaction of RE
and agile methods in large-scale development. We studied
the scope of agile methods, the role of requirements in
this context, and requirements-related challenges of large-
scale agile systems development. In all case companies, the
way how plan-driven and agile development currently co-
exist within the systems engineering environment limits the
potential development speed. We found that in all companies,
there is a need for some kind of traditional RE, especially with
respect to documenting a system’s behavior for future feature
requests or maintenance. The case companies use different
scopes for agile development, ranging from agile development
on team-level embedded in an overall plan-driven process
up to agile development for the entire product development.
Despite the different scopes, we observed similar challenges
in all companies. These relate to establishing a shared view
of value from the customer and other stakeholders down to
development, and to building up and maintaining a shared
system understanding. In order to mitigate these challenges,
we encourage future work to focus on aligning a holistic re-
quirements model with agile practices. Ideally, this will allow
large-scale system development efforts to fully benefit from
agile methods, while still systematically managing knowledge
about customer value and how the system under construction
relates to this.

ACKNOWLEDGMENTS

We thank all participants in this study for their great support,
deep discussions, and clarifications as well as Jennifer Horkoff
and Francisco Gomes for invaluable feedback. This work was
supported by Software Center Project 27 on RE for Large-
Scale Agile System Dev. and the SIDA BRIGHT project.

REFERENCES

[1] K. Beck. Extreme programming explained: embrace change. addison-
wesley professional, 2000.

[2] C. Berger and U. Eklund. Expectations and challenges from scaling
agile in mechatronics-driven companies – a comparative case study. In
Proc. of 16th Int. Conf. on Agile Processes in Software Engineering and
Extreme Programming (XP ’15), pages 15–26, 2015.

[3] E. Bjarnason, M. Unterkalmsteiner, M. Borg, and E. Engström. A multi-
case study of agile requirements engineering and the use of test cases as
requirements. Information and Software Technology, 77:61–79, 2016.

[4] E. Bjarnason, K. Wnuk, and B. Regnell. A case study on benefits and
side-effects of agile practices in large-scale requirements engineering.
In Proc. of 1st WS on Agile Reqts. Eng., 2011.

[5] T. Chow and D.-B. Cao. A survey study of critical success factors in
agile software projects. Journal of Systems and Software, 81(6):961–
971, 2008.

[6] K. Dikert, M. Paasivaara, and C. Lassenius. Challenges and success
factors for large-scale agile transformations: A systematic literature
review. Journal of Systems and Software, 2016.

[7] U. Eklund, H. Holmström Olsson, and N. J. Strøm. Industrial challenges
of scaling agile in mass-produced embedded systems. In Proc. of
Int. WS on Agile Methods. Large-Scale Dev., Refactoring, Testing, and
Estimation, pages 30–42, 2014.

[8] F. Evbota, E. Knauss, and A. Sandberg. Scaling up the planning game:
Collaboration challenges in large-scale agile product development. In
Proc. of 17th Int. Conf. on Agile Softw. Dev., Edinburgh, UK, 2016.

[9] B. Fitzgerald, K.-J. Stol, R. O’Sullivan, and D. O’Brien. Scaling agile
methods to regulated environments: An industry case study. In Proc. of
35th Int. Conf. on Software Eng. (ICSE), pages 863–872, 2013.

[10] G. R. Gibbs. Analysing qualitative data. Sage, 2008.
[11] G. K. Hanssen, B. Haugset, T. Stålhane, T. Myklebust, and I. Kulbrand-

stad. Quality assurance in scrum applied to safety critical software. In
Int. Conf. on Agile Software Dev., pages 92–103. Springer, 2016.

[12] V. T. Heikkila, D. Damian, C. Lassenius, and M. Paasivaara. A mapping
study on requirements engineering in agile software development. In
41st Euromicro Conf. on Softw. Eng. and Advanced Applications (SEAA
’15), pages 199–207, 2015.

[13] V. T. Heikkilä, M. Paasivaara, C. Lasssenius, D. Damian, and C. Eng-
blom. Managing the requirements flow from strategy to release in large-
scale agile development: a case study at ericsson. Empirical Software
Engineering, pages 1–45, 2017.

[14] R. Hoda, J. Noble, and S. Marshall. Self-organizing roles on agile soft-
ware development teams. IEEE Transactions on Software Engineering,
39(3):422–444, 2013.

[15] I. Inayat, S. S. Salim, S. Marczak, M. Daneva, and S. Shamshirband. A
systematic literature review on agile requirements engineering practices
and challenges. Computers in human behavior, 51:915–929, 2015.

[16] ISO. Road vehicles – Functional safety, 2011.
[17] T. Kahkonen. Agile methods for large organizations-building commu-

nities of practice. In Agile Dev. Conf., 2004, pages 2–10, 2004.
[18] R. Kasauli, E. Knauss, A. Nilsson, and S. Klug. Adding value every

sprint: A case study on large-scale continuous requirements engineering.
In Proc. of 3rd WS on Cont. Reqts. Eng., Essen, Germany, 2017.

[19] M. Laanti, O. Salo, and P. Abrahamsson. Agile methods rapidly
replacing traditional methods at nokia: A survey of opinions on agile
transformation. Information and Softw. Techn., 53(3):276–290, 2011.

[20] L. Lagerberg, T. Skude, P. Emanuelsson, K. Sandahl, and D. Ståhl.
The impact of agile principles and practices on large-scale software
development projects: A multiple-case study of two projects at ericsson.
In ACM / IEEE Int. Symposium on Empirical Software Engineering and
Measurement, pages 348–356, 2013.

[21] D. Leffingwell et al. Scaled agile framework 3.0, 2014.
[22] M. Lindvall, D. Muthig, A. Dagnino, C. Wallin, M. Stupperich,

D. Kiefer, J. May, and T. Kahkonen. Agile software development in
large organizations. Computer, 37(12):26–34, 2004.

[23] B. Meyer. Agile! The Good, the Hype and the Ugly. Springer, 2014.
[24] M. Paasivaara and C. Lassenius. Challenges and success factors for

large-scale agile transformations: A research proposal and a pilot study.
In Proc. of the Scientific WS Proc. of XP2016, page 9. ACM, 2016.

[25] F. Paetsch, A. Eberlein, and F. Maurer. Requirements engineering and
agile software development. In WETICE, volume 3, page 308, 2003.

[26] J. Pernstål, A. Magazinius, and T. Gorschek. A study investigating chal-
lenges in the interface between product development and manufacturing
in the development of software-intensive automotive systems. Interna-
tional Journal of Software Engineering and Knowledge Engineering,
22(07):965–1004, 2012.

[27] B. Ramesh, L. Cao, and R. Baskerville. Agile requirements engineering
practices and challenges: an empirical study. Information Systems
Journal, 20(5):449–480, 2010.

[28] P. Runeson, M. Höst, A. Rainer, and B. Regnell. Case Study Research
in Software Engineering. Wiley, 1 edition, 2012.

[29] O. Salo and P. Abrahamsson. Agile methods in european embedded
software development organisations: a survey on the actual use and
usefulness of extreme programming and scrum. IET software, 2(1):58–
64, 2008.

[30] J. Savolainen, J. Kuusela, and A. Vilavaara. Transition to agile
development-rediscovery of important requirements engineering prac-
tices. In 18th Int. Req. Eng. Conf., pages 289–294. IEEE, 2010.

[31] D. Stahl and J. Bosch. Modelling continuous integration practice
differences in industry software development. Systems and Software,
87:48–59, 2014.

[32] K. Wiklund, D. Sundmark, S. Eldh, and K. Lundqvist. Impediments
in agile software development: An empirical investigation. In Proc of
Product-Focused SW Process Impr., pages 35–49, 2013.

[33] R. Wohlrab, J.-P. Steghöfer, E. Knauss, S. Maro, and A. Anjorin.
Collaborative traceability management: Challenges and opportunities. In
Proc. of 24th Int. Reqts. Eng. Conf. (RE), pages 216–225, 2016.

	ieee_preprint
	re17_agileRE

